Applicability of object-based storage
devices In parallel file systems

Pete Wyckoff

Ohio Supercomputer Center
pw@osc . edu

HECURA Showcase 7 aug 07



Vision

 Processors faster, disk densities up, but I/O

rates comparatively flat
* Leverage intelligent peripherals to improve
scalability, managability, performance

Serverless parallel distributed file systems



Motivation

 OSDs offer higher-level semantic interface
e Secure, direct access of storage by clients

* Our work
— Examine role of OSDs in parallel file systems
— Analyze trade-offs of using OSDs for various
aspects of parallel FSes
— Develop extensions required for efficient use of
OSDs in HPC parallel environments
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Mapping Data to Objects

Block-based "objects" are 512 bytes
OSD objects could be files
For striped files, object Is stripe, or stripe set?

Collection feature allows grouping objects

— fast searching
— choose object boundaries to coincide with search

Delegating object creation to clients

When to create objects on create?
- lazy, preallocate




Metadata

 OSDs store attributes with objects

 How do parallel FS attributes map to these?

- uid, gid, perm, [acm]time, type
 mtime of object vs mtime of file

— data distribution: mapping of bytes to objects
- POSIX extended attributes

 Managing collective behavior
— object allocation, fsck, rebalancing

e Select objects by attribute
— collections for indexing applied to metadata



Directories

» Familiar form of data organization

* NO consistency to relax for directories

* Need overall sequential behavior for any single
directory

e For passive targets, this may be impossible



Progress

» Full stack for OSD work
— Initiator library
- ISCSI target
- OSD emulator

» Parallel file system using OSDs

v Phase 1: datafile
e Striping, handle mapping, object management

v Phase 2: metafile
* handle mapping, metadata storage, distributions

- Phase 3: directory
e atomicity, tree layout, POSIX corner cases
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Initiator

Create CDBs

Submit commands

Retrieve results

Generate and parse get/set attributes
Device enumeration and mapping
Python interface and basic unit tests

Use "bsg" interface to SCSI midlayer (+ fixes)
- extended CDBs

— bidirectional

- lovec

Use "bidi" patches from Panasas (+ fixes)

Why not Intel or IBM Initiators?
— reliance on old kernel APlIs
— non-bidirectional



Target

e Use "stgt" for SCSI and ISCSI
— all userspace
- leading approach for linux adoption
— active development
 Many changes to stgt, most merged
- OSD target command processing
— ISCSI bidirectional implementation
- ISER (ISCSI/RDMA) implementation
- bug fixes
* \WWhy not kernel-based ISCSI target?
- not the linux way
- living In out-of-tree modules is difficult



OSD Target Emulator

* Processes the commands delivered by stgt

« Command categories
— object manipulation (done)
— attribute manipulation (done)
- 1/O (done)
— security (not done)
- device management (partial)
— collections (soon)

* Object storage
- via POSIX and ext3: pread, pwrite

o Attributes
- via SQLite, full SQL implementation
— complex operations very succinct and fast



Other OSD Target Emulators

* IBM ObjectStone

— binary-only x86-32 blob
— cannot modify or evaluate

* Intel uosd
- very simple, single-file implementation
- only 8 basic commands
— each attribute stored in a separate file

e Du, UMN
— extensions to Intel

— added extensive security infrastructure
— same attribute implementation
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Processing phase

SQLite 81.3 £ 0.3 us
CDB 2.2 0.5 us
1SCSI 29.9 4+ 1.7 us
Initiator 125.6 £2.9 us
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Storage on disk Storage on RAM
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Major Accomplishments

 Use OSDs natively in a real parallel file system

* |nfrastructure for OSDs
— Library for OSD commands at initiator
— Emulator for OSD target
- ISCSI over RDMA for performance

* Revisit assumptions in PFS architecture
— separate data and metadata
— servers In the data path
- servers at all



Barriers

 PVES server functionality assumptions
- handle mapping
— server-initiated operations (soon)

e Other parallel FS assumptions
— Ceph: servers forward write data to other servers
— Lustre: byte-range locking, callbacks
- Panasas: closer fit
- NFSv4:. OSD mapping exists (datafile only)

e lack of OSD hardware

e need for OSD extensions
— atomic operations
— scatter/gather on server
— server-chosen retrieved attributes offset



Publications

* Integrating parallel file systems with object-

based storage devices

- SCO07, Reno, NV, November 2007

- system design, PFS mapping, PVFS impl.

- overheads, metadata scaling, 10 throughput, apps
» Attribute storage design for object-based

storage devices
- MSSTO7, San Diego, CA, September 2007
— detalls on SQL use In metadata storage
* ISER storage target for object-based storage

devices
- MSSTO7 SNAPI Workshop, San Diego, Sept 07
- ISCSI over RDMA

 Metadata design paper
- to FASTO0S8, due Sep 07



Stalff

* Pete Wyckoff
- PI, 25+% time
- Initlator and PVFS lead
* Ananth Devulapalli
— OSC staff, 25+% time
- target lead
e Dennis Dalessandro
- OSC staff, 25% time
- network lead



Students

 Nawab Ali
- OSU graduate student, CS, 2nd year, half time

— advisor: P. Sadayappan
— parallel FS metadata design
» Paul Betts
- OSU undergraduate, senior CS, 15 hr/wk
— Initiator kernel module, python interface

* Alex Moore
- OSU undergraduate, senior CS, 15 hr/wk
- target attribute handling

 Tim Arnold

- OSU undergraduate, sophomore physics, 15 hr/wk
- LIST, collection functions



Conclusion

* Enable higher semantic interface to storage

 Avoid middle-box interference on data path

* Understand roles of clients, metadata servers,
O servers, lock servers, etc in parallel FSes

» Actively sharing code with
- Panasas
- Seagate
- Fujitsu
 Goal: build a single shared OSD environment to
encourage research by ourselves and others



